Home » 스터디 » Page 2

스터디

[Python] 클래스 이해하기

클래스를 설명할 때 흔히 쓰는 표현은 ‘클래스는 거푸집에 해당하고 객체는 그 거푸집으로 찍어내는 벽돌에 해당한다.’는 것이다. 물론 완전히 틀린 설명은 아닌데, 이 개념에서 출발해서 클래스를 이해하는 것은 객체와 클래스의 관계와 클래스를 어떻게 다룰 것인지 등 여러 관점을 정립하는데 많은 어려움을 유발한다.

이 글은 파이썬 초보자들이 클래스에 대해 접근하고 이해하는데 도움을 주고자 작성됐다.

모든 것은 객체이다.

파이썬에서 통용되는 가장 중요한 대전제는 모든 것이 객체라는 것이다. 1, 2와 같은 숫자값도 C처럼 원시값이 아니라 int 타입의 객체이다. 함수 역시 객체이고 모듈이나 패키지도 객체처럼 취급된다. 모든 것이 객체라면, 클래스 그 자체도 객체라는 말이된다. 그럼 이 시점에서 다시 한 번 되물어보자. 도대체 객체란 무엇인가?

더 보기 »[Python] 클래스 이해하기

예제로 이해해보는 모나드 – 파서구현하기

Applicative Functor가 Functor를 확장하는 것처럼, 모나드도 Applicative의 차원을 확장한 것이라 할 수 있습니다. 하지만 그것은 단순한 기술적인 설명일 뿐이며 모나드에서는 그 모나드가 가지는 계산적 맥락이 어떤 특성을 갖는지를 이해하는 것이 중요합니다. (그리고 이것은 매우 추상적이라 쉽지 않습니다.)

이런 경우 구체적인 예를 들어가며 살펴보는 것이 좋은데, 모나드의 경우 흔히 파서(Parser)를 예로 듭니다. 파서란 어떤 해석기 같은것을 만들 때, 가장 앞단에 위치하는 부분으로 (주로) 문자열로 이루어진 데이터를 정해진 문법적 규칙(리터럴)에 맞게 토큰으로 분리하고, 각 토큰이 갖는 논리적 관계에 맞게 트리를 만들어내는 논리장치입니다. 어떠한 데이터, 특히 코드를 해석하는 모든 프로그램은 파서를 가지고 있습니다. 모든 언어의 컴파일러나 인터프리터는 기본적으로 해석기 이므로 파서가 필요합니다. 웹브라우저는 HTML 코드를 읽고 그 문법적 구조를 이해해야 하기 때문에 HTML 코드를 잘라내는 파서를 가지고 있습니다.

실질적으로 유용하고 의미있는 작업을 하는 파서를 만드는 것은 사실 매우 어렵고 복잡한 일입니다. 여기서는 단지 파서를 핑계로 모나드를 이해하는데 도움을 주려하기 때문에 아주 단순하면서도 쓸모없는 간단한 파서의 타입을 정의해보겠습니다.

더 보기 »예제로 이해해보는 모나드 – 파서구현하기

Raw 포인터 사용에 대해

https://developer.apple.com/documentation/swift/unsaferawpointer

UnsafeRawPointer 타입은 자동 메모리 관리, 타입 안정성 및 메모리 정렬 보장이 되지 않는 원시 포인터 액세스를 제공합니다. 이 타입을 사용하려면 누수를 피하고, 할당된 메모리의 라이프 사이클을 직접 관리해야 하며, 그 외의 정의되지 않는 동작들을 회피해야 합니다. 수동으로 직접 관리하는 메모리 영역은 특정한 타입에 바운드되거나, 타입이 지정되지 않을 수도 있습니다. 메모리 영역에서 해당 영역이 특정 타입에 묶여있는지 여부와 무관하게 순수 바이트를 액세스하려할 때 UnsafeRawPointer 타입을 사용할 수 있습니다.

막 할당된 Raw 메모리는 타입화되지도 초기화되지도 않은 상태입니다. 이 메모리는 타입화된 연산을 사용하기 전에 반드시 초기화되어야 합니다. (초기화되려면 초기값을 가져야하고, 이는 타입화를 수반해야한다는 의미가 됩니다.) 초기화되지 않은 상태에서 특정 타입에 바인등하려면 bindMemory(to: count:)를 사용합니다. 이 메소드는 타입화된 포인터를 반환하며, 이후에는 해당 포인터를 사용해야 합니다.

더 보기 »Raw 포인터 사용에 대해

버퍼 포인터 이해하기

C에서 특정한 T타입의 배열은 메모리 상에서 연속적인 공간입니다. 이 때문에 정적 배열이든 동적 배열이든 배열을 액세스하는 것은 필연적으로 포인터와 관련됩니다. 반면 Swift의 배열에서 원소들은 반드시 이런 식으로 배치되지는 않습니다. C의 배열이 단지 원소값이 나란히 배치된 메모리 영역임에 비해 Swift의 배열은 struct로 구성되는 보다 복잡한 내부 구조를 가지고 있습니다.

이 때 T 타입이 차지하는 바이트 수가 고정되어 있으므로 배열의 시작번지와 인덱스 값을 알고 있다면 해당 인덱스에 위치한 값을 액세스할 수 있습니다. C에서 배열 이름은 암묵적으로 배열의 시작번지를 의미하므로, arr[i]로 표현되는 i 번째 원소의 값은 실제 컴파일러는 *(arr + i) 로 변환하여 접근합니다.

Swift에서도 UnsafePointer를 사용하여 포인터를 다룰 수 있는데, 이 때 범위(capacity, Pointee 타입의 메모리 사이즈 x 원소의 개수)내에는 동일타입을 구성하는 값들이 연속하여 배치되어 있습니다. 따라서 (ptr + i).pointee 와 같은 식으로 i 번째 원소에 대해 액세스가 가능합니다. 이것은 C의 접근방법과 매우 유사합니다. 하지만 이것은 단순한 메모리 연속체에서 특정 지점을 액세스하는 법일 뿐, Swift의 배열을 다루는 것과는 차이가 있습니다. Swift의 배열은 원소가 연속해있으면서 Sequence, Collection 프로토콜에 의한 여러가지 연산을 지원받습니다.

더 보기 »버퍼 포인터 이해하기

Unmanaged 에 대해 – Swift

그 옛날(?) ARC가 없던 시절에 Objective-C 및 코어 파운데이션에서 객체에 대한 참조수 관리는 완전한 수동 방식에 의존하고 있다. 어떤 객체에 대한 retain(참조수를 늘리는 것) 동작은 반드시 그에 수반하는 release(참조수를 내리는 것) 동작을 필요로 했다. 그리고 이 짝이 제대로 맞지 않으면 객체는 필요한 시점에 사라지고 없거나, 반대로 메모리 누수가 발생했다. 그러던 중 자동 참조수 카운팅(ARC)이 도입되었는데, ARC 환경에서는 모든 retain/release/autorelease 콜이 컴파일러에 의해 코드에 자동으로 삽입되었다. 이는 전체적인 코드량의 감수는 물론 개발 난이도를 매우 낮춰주는 역할을 했다.

ARC가 도입된 이후 Objective-C 메소드에 의해 반환되는 모든 Objective-C 객체와 코어 파운데이션 객체의 메모리 관리는 자동으로 이루어졌다. 하지만 C 함수에 의해 리턴되는 코어 파운데이션 객체는 이러한 은혜를 받지 못했다. 따라서 여기에 속하는 객체들에 대해서는 여전히 CFRetain(), CFRelease()를 호출하거나, __bridge*로 시작하는 함수를 통해 Objecitve-C 객체로 브릿징해야 했다.

더 보기 »Unmanaged 에 대해 – Swift

포인터 관련 메모

타입화된 포인터

Swift는 C API와의 상호작용 혹은 고성능 자료구조의 구현등을 위해 포인터를 통한 메모리 액세스를 제한적으로 지원하고 있습니다. 기본적으로 Swift 타입 혹은 Swift 에서 인식할 수 있는 C 타입에 대한 포인터는 ‘타입화된(typed)’ 포인터라고 하며, UnsafePointer를 사용합니다. UnsafePointer는 제네릭 struct 타입으로 특정 Swift 타입에 대한 포인터로 기능합니다. UnsafePointer는 메모리 주소를 통한 액세스를 허용해주기는 하지만 값의 불변성을 보장하기 때문에 해당 포인터가 가리키는 값(pointee)를 변경하는 것을 허용하지 않습니다. 변수에 대한 포인터는 UnsafeMutablePointer를 별도로 사용합니다.

더 보기 »포인터 관련 메모

(Swift) 프로토콜 그 자체가 자신을 따르지 않는다

Swift 5.1에 추가된 some 키워드 (불투명 리턴 타입)에 관한 Swift 공식 문서를 살펴보다가 이상한 구절을 발견했다.

Another problem with this approach is that the shape transformations don’t nest. The result of flipping a triangle is a value of type Shape, and the protoFlip(_:) function takes an argument of some type that conforms to the Shape protocol. However, a value of a protocol type doesn’t conform to that protocol; the value returned by protoFlip(_:) doesn’t conform to Shape. This means code like protoFlip(protoFlip(smallTriange)) that applies multiple transformations is invalid because the flipped shape isn’t a valid argument to protoFlip(_:).

프로토콜 타입의 값이 그 프로토콜을 따르지 않는다는 것이다. 왱? 이게 뭔말이지? 특정한 프로토콜을 따르는 객체들은 그 실제 타입에 상관없이 해당 프로토콜을 타입처럼 사용할 수 있다고 했는데, 이번에는 프로토콜 타입의 값이 그 프로토콜을 따르지 않는다라니?

더 보기 »(Swift) 프로토콜 그 자체가 자신을 따르지 않는다

Selector를 사용한 소켓 멀티플렉싱

소켓을 사용하여 간단한 서버를 만들 때에는 서버 소켓을 생성하고, 이를 특정한 네트워크 포트에 바인드한 다음, listen() 메소드를 사용해서 해당 포트로 들어올 수 있는 접속 대기열의 크기를 지정합니다. 그런 다음 해당 소켓의 accept() 메소드를 사용해서 클라이언트 소켓을 생성하고, 이 클라이언트 소켓을 통해 클라이언트가 보낸 요청을 읽고, 그에 대한 응답을 보내게 됩니다.

서버 소켓은 클라이언트가 접속할 때마다 ‘서버가 사용하는 클라이언트 소켓’을 따로 생성하고 실제 통신은 두 클라이언트 소켓 사이의 peer-to-peer 방식의 대화가 됩니다. 따라서 하나의 서버 소켓은 여러 클라이언트의 접속을 받을 수 있습니다.

만약 다중 접속을 허용하는 소켓 서버를 파이썬에서 구현한다면 가장 쉬운 방법은 스레드를 사용하는 것입니다. 클라이언트 소켓을 인자로 받는 핸들러 함수를 하나 작성하고, 서버 소켓의 accept() 메소드가 리턴하는 시점에 핸들러 함수에게 클라이언트 소켓을 주고 새로운 스레드에서 작동하도록 시작해주면 됩니다.

여기까지의 작동 모델은 ‘동기식 소켓’을 사용합니다. 동기식 소켓은 send(), recv(), accept() 등의 동작이 모두 블럭되는 소켓입니다. 따라서 스레드가 소켓의 입출력을 기다리는 동안에는 다른 일을 할 수가 없습니다. 그래서 서버 소켓과 클라이언트 소켓들이 동시에 작동할 수 없으니 스레드를 사용하는 것이겠죠.

소켓 라이브러리는 이와 다른 비동기 소켓을 지원하고 있습니다. 비동기 소켓은 소켓을 바인딩하기 전에 sock.setblocking(False)를 명시해서 블록킹 모드를 논블록킹으로 변경해줍니다. 이렇게 만들어진 비동기 소켓을 소켓 API만으로 사용할 수는 없습니다. Python How To 문서는 select.select() 를 사용할 것을 추천합니다만, 이는 문서가 오래되었음을 감안해야 하며 실제 파이썬 공식문서는 보다 고수준으로 설계되어 사용하기 쉬운 selectors 모듈을 쓸 것을 추천하고 있습니다.

이 글에서는 selectors 모듈을 사용하여, 단일 스레드에서 하나의 소켓 서버가 여러 클라이언트의 요청을 처리하는 멀티플렉싱을 어떻게 구현하는지 소개하며, 셀렉터 사용 방법에 대해서 살펴보겠습니다.

더 보기 »Selector를 사용한 소켓 멀티플렉싱