콘텐츠로 건너뛰기
Home » 약수의 합

약수의 합

오일러 프로젝트 23

자신을 제외한 약수(진약수)를 모두 더하면 자기 자신이 되는 수를 완전수라고 합니다. 예를 들어 28은 1 + 2 + 4 + 7 + 14 = 28 이므로 완전수입니다. 또, 진약수의 합이 자신보다 작으면 부족수, 자신보다 클 때는 초과수라고 합니다. 12는 1 + 2 + 3 + 4 + 6 = 16 > 12 로서 초과수 중에서는 가장 작습니다. 따라서 초과수 두 개의 합으로 나타낼 수 있는 수 중 가장 작은 수는 24 (= 12 + 12) 입니다.

해석학적인 방법을 사용하면, 28123을 넘는 모든 정수는 두 초과수의 합으로 표현 가능함을 보일 수가 있습니다. 두 초과수의 합으로 나타낼 수 없는 가장 큰 수는 실제로는 이 한계값보다 작지만, 해석학적인 방법으로는 더 이상 이 한계값을 낮출 수 없다고 합니다.

그렇다면, 초과수 두 개의 합으로 나타낼 수 없는 모든 양의 정수의 합은 얼마입니까?

http://euler.synap.co.kr/prob_detail.php?id=23
더 보기 »오일러 프로젝트 23

오일러 프로젝트 21

n의 약수들 중에서 자신을 제외한 것의 합을 d(n)으로 정의했을 때, 서로 다른 두 정수 a, b에 대하여 d(a) = b 이고 d(b) = a 이면 a, b는 친화쌍이라 하고 a와 b를 각각 친화수(우애수)라고 합니다. 예를 들어 220의 약수는 자신을 제외하면 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 이므로 그 합은 d(220) = 284 입니다. 또 284의 약수는 자신을 제외하면 1, 2, 4, 71, 142 이므로 d(284) = 220 입니다. 따라서 220과 284는 친화쌍이 됩니다. 10000 이하의… 더 보기 »오일러 프로젝트 21