오일러 프로젝트 75

문제

긴 철사를 구부려서 세 변이 정수인 직각 삼각형을 만들 때, 그 방법이 한 가지 뿐인 경우는 12cm를 최소로 해서 아래와 같이 여러 개가 있습니다. 

12cm: (3, 4, 5)
24cm: (6, 8, 10)
30cm: (5, 12, 13)
36cm: (9, 12, 15)
40cm: (8. 15, 17)
48cm: (12, 16, 20)

반면에, 20cm의 경우 처럼 세 변이 정수인 직각 삼각형을 만들 수 없을 때도 있고, 여러 종류의 직각 삼각형을 만들 수 있을 때도 있습니다. 예를 들어 120cm의 철사로는 세 가지의 서로 다른 직각 삼각형이 만들어집니다. 

120cm: (30, 40, 50), (20, 48, 52), (24, 45, 51)

그러면 길이가 백오십만(1,500,000)이하인 철사를 가지고 세 변이 정수인 직각삼각형을 만들 때, 그 길이로는 한가지 방법으로만 만들 수 있게 되는 경우는 모두 얼마나 됩니까?

오일러 프로젝트 75 더보기

오일러 프로젝트 73

오일러 프로젝트 73번 문제는 기약진분수에 대한 문제이다. 이전 두 문제에서 오일러 피함수와 관계한 기약 진분수의 문제는 악몽과 같은 수행 시간을 보였는데, 이 문제는 그나마 스케일이 조금 작아서 그다지 어렵지 않다.

오일러 프로젝트 73 더보기

오일러 프로젝트 72

오일러 프로젝트 72 번 문제는 여태껏 나왔던 문제에서의 최고 난이도를 또 한 번 갱신했다. 오일러 피 함수(\phi )의 1에서 100만까지의 자연수에 대한 피함수 값의 합을 구해야하는 문제이며, 피 함수를 빠르게 작성하는 것이 얼마나 고된(?)일인지 알고 있다면 이 문제를 brute force로 푸는 것은 정말 답이 없다는 점에서 마음을 단단히 먹어야 한다.

오일러 프로젝트 72 더보기