오일러 프로젝트 014

오일러 프로젝트 014 백만 이하로 시작하는 우박수 중 가장 긴 과정을 거치는 것 http://euler.synap.co.kr/prob_detail.php?id=14 양의 정수 n에 대하여, 다음과 같은 계산 과정을 반복하기로 합니다. n → n / 2 (n이 짝수일 때) n → 3 n + 1 (n이 홀수일 때) 13에 대하여 위의 규칙을 적용해보면 아래처럼 10번의 과정을 통해 1이 됩니다. 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 아직 증명은 되지 않았지만, 이런 과정을 거치면 어떤 수로

오일러 프로젝트 010

오일러 프로젝트 10번 10 이하의 소수를 모두 더하면 2 + 3 + 5 + 7 = 17 이 됩니다. 이백만(2,000,000) 이하 소수의 합은 얼마입니까? (http://euler.synap.co.kr/prob_detail.php?id=10) 지난 번에 만든 isPrime() 함수를 이용해서 다음과 같이 풀면 되는데… print sum((x for x in range(2000000+1) if isPrime(x)))

오일러 프로젝트 008

오일러 프로젝트 8번 다음은 연속된 1000자리 숫자입니다 (읽기 좋게 50자리씩 잘라놓음) 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 여기서 붉게 표시된 71112의 경우 7, 1, 1, 1, 2 각 숫자를 모두 곱하면 14가 됩니다. 이런 식으로 맨 처음 (7 × 3 × 1 × 6 × 7 = 882) 부터 맨 끝 (6 × 3 × 4 × 5 × 0 = 0) 까지 5자리 숫자들의 곱을

오일러 프로젝트 006

오일러 프로젝트 6번 1부터 10까지 자연수를 각각 제곱해 더하면 다음과 같습니다 (제곱의 합). 1^2 + 2^2 + … + 10^2 = 385 1부터 10을 먼저 더한 다음에 그 결과를 제곱하면 다음과 같습니다 (합의 제곱). (1 + 2 + … + 10)^2 = 55^2 = 3025 따라서 1부터 10까지 자연수에 대해 “합의 제곱”과 “제곱의 합” 의 차이는 3025 – 385 = 2640 이 됩니다. 그러면 1부터 100까지 자연수에 대해 “합의 제곱”과 “제곱의 합”의 차이는 얼마입니까? (http://euler.synap.co.kr/prob_detail.php?id=6) 문제 그대로를 풀면 되겠다. 파이썬